Conformal Field Theory and Gravity

Solutions to Problem Set 9 Fall 2024

1. Basics of 2D CFT

a) By symmetry, we can assume that all indices are ordered, so there are at most £+ 1
y sy Y
components Mi1 1, M1 19, ..., M5 _o. Tracelessness implies that

OuMyva..s = Miia..p + Masa..5 =0 (1)

hence we can eliminate any pair of (11) indices in favor of a pair of (22) indices.
Thus any tensor with spin £ > 2 has 2 independent components: Mjss o and M o
(the exception is £ = 0, which has a single component).

We still need to show that M, . := M and M; s := M are independent. In
fact, we can simply show that all other components vanish. This is again due to
tracelessness. In the z, Z coordinates, the flat-space metric reads ds? = dzdz, so the
components of the metric are

92z = Gz = =, 9zz = Jzz = 0 (2)

DN | —

and the inverse metric satisfies g** = ¢** = 0, ¢** = ¢** = 2. Thus
O = gMVMMVOc.--B = 4MZEO[5 (3)

for any indices «, ..., 3. In conclusion, the only non-zero components of any trace-
less symmetric tensor are M and M. Finally, using the Jacobian, we find that

M12__2 = Zle_l (M + (-1)Z_1M) and MQ__Q = Z.g (M —I— (—1)£M) . (4)

Conservation of a tensor means that
0= guya,u,Mua,..B =2 (8Ma..,6 + 5Ma...ﬁ) (5)

using the shorthand notation & = 9/9z, 0 = 9/0z. In particular, by setting all
coordinates either equal to z or to z, we find that

OM =0, OM =0. (6)

In other words, the component M depends only on z, and M only depends on Z.

Under a finite rotation R, a tensor transforms as
TH(x) = R RS T (). (7)

In the z, Z coordinates, a rotation by an angle # can be represented as

e? 0
H — )
Ru - ( 0 6—10) : (8)



Thus A B B
M(z,2) — M2, Z), M(z,2)— e ™M, 7), (9)

with 2/ = ez, 7 = e "z,

Finally, in the z, Z coordinates, parity (y — —y) acts as

re=(1 ) (10)

so that (up to an intrinsic parity ny = £1),

M(z,2) = M(2,2), M(z,2)— M(z,2). (11)

We can start from the known 2-pt function

(@) () = k%ﬂ (12)

|

for some constant k; > 0, where for conserved currents, obviously A =d —1 = 1.
We can get the component correlators using

J = (92")], = %(J1 gy, T = (02T, = %(J1 +id). (13)
Then we find that . .
(J(z,2)J(w,w)) = ECRCETE (14)
Setting A = 1, we find in particular that
(22w, @) = —5 (15)
2(z — w)?

so we confirm that the correlator only depends on the holomorphic coordinates z, w.

Likewise
k.

02T, 0) =~y

(J(2,2)J(w, @) = 0. (16)

Parity is automatically preserved in this way. Conversely, without parity invariance
we could write the same 2-pt functions with different constants k; in the (JJ) and
(JJ) correlators, and such correlators would be conformally invariant.

Likewise,

(J(2,2)J(w,0)) = ————, (J(z,2)J(w,w)) = 0. (17)

For the stress-energy tensor, we obtain

TETw) = —L2 (T Tw) =0, (TE)Tw) = ~L2

(z —w)¥’ (18)



()

It is trivial to show that the modes with labels m,n € {—1,0, 1} form a subalgebra.
In particular, their commutator only gives modes in {—1,0,1}. It is a standard
fact from complex analysis that the only conformal transformations of the extended
complex plane C = C U {oo} are

_az—i—b
e+ d

f(2)

ad — be # 0. (19)

The group of these transformations is called the Mobius or global conformal group,
denoted by PSL(2,C). It is generated by translations, rotations, dilations, and
inversions:

fu(2) =24a, for(2)=€%2  fu(2) =cz,  ful(2) = % (20)

The global conformal group enlarges the group of rigid transformations of C (that is,
translations and rotations) by adding scale transformations and mappings that turn
the complex plane “inside out.” An interesting fact is that PSL(2,C) = SO(3,1).

The global Virasoro generators have physical interpretations:

o Lo+ Ly generates dilatations and is the Hamiltonian.
o Lo — Ly generates rotations and is the angular momentum.
e L_jand L, generate translations.

« L, and L; generate special conformal transformations.

Since the generator of translation is the energy-momentum tensor, we have
H — LO —|— Eo, (21)

which means that h and h are the energies of the states.

Let 1)) € Hcpr be an eigenvector of Ly with weight h. Using the Virasoro algebra,
we find that the state L,|¢) is also an eigenvector of Ly with eigenvalue shifted by
n:

Lo(Ln|¢)) = ([Lo, Ln] + LnLo)|1h) = (h = n)Ln[t)). (22)

Since L, lowers the energy of a state by n, and the Hamiltonian is bounded from
below, there must exist an Ly eigenstate [¢)) that is annihilated by L,, for all n > 0.
Any state |¢) € Hepr for which

Lo|p) = hlyp), Lyl) =0 foralln >0 (23)
is called a primary or highest weight state.
At level 1, there is a single state L_,|O) with norm
(O|L1L_1]|0) = 2(O|Lo|O) = 2h{O|O) = 2h, (24)

where we normalized the state to have norm 1. This implies that for unitarity, we
need h > 0.

At level 2, there are two possible states:
[W11) = L2,|0),  [v2) = L5|O). (25)
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The 2 x 2 Gram matrix at level 2 is

2 [ (Walia) (Wialve)\ . (4R(2R4+1)  6h
M()(C’m_(wz!wl,n <w2|w2>)_( 6h §+4h>' (26)

At level 3, we have

Wl) = L—1|O>7 (27)
with the 3 x 3 Gram matrix
(i) (alng) (W) 2h 0 0
M®(e,h) = | (ralvn) (Wualng) (@Wuale) | = [ 0 4h(2h+1) 6h
(Valth1)  (Yalthrn)  (Yalth) 0 6h s+ 8h)( )
28

This matrix should be positive definite. One can solve for its eigenvalues. You can
read about it in Di Francesco page 207. The trace is

Tr (M®(c, h)) = g +2h(5 + 4h) — g when i = 0 (29)
and the determinant

det (M®(c,h)) = 4h(c + 2h(c + 8h — 5)) — 0 when h = 0. (30)

The eigenvalues, with h = 0, are 0, 0, and ¢/2, such that we get ¢ > 0 again. Null
states are states for which norms are zero.

2. OPE and free scalars

(a) We can prove this result using the sampling property of the delta function. Let R
be a closed domain in the complex plane. Then the divergence theorem in complex
coordinates says that

/Rde(ﬁvz + Ovz) = zj{ (v.dZ — vsdz), (31)

OR
where v, is a vector field, and the contour R is traversed anticlockwise.

Now let f(z) be a holomorphic test function and suppose that the region R encloses
the origin.

/Rdzzaglnlz\Qf(z) :/RdZZEGf(z)) :—ing%f(z):%rf(O), (32)

where we use the residue theorem in the final line.

Similarly, for an antiholomorphic test function f(%),

/ d*2001n|z|*f(Z) = 27{ gf(%) =27 f(0). (33)
R R

This means that _
00In |z|* = 270(2, %), (34)

by the definition of the delta function.
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(b) The free field X*(z, z) satisfies the OPE

/
XMz, 2) X" (w, @) ~ —%n“”ln]z—w\? (35)
Taking derivatives, this implies

a/

OXH(2)0X" (w) ~ ——n™

et (36)

We can invert the mode expansion 0X"(2) = —iy /%< >, altz7""! via

_Z .n B p o n—m—l 7 — Ak
i — ]{27”2 0X 742m Za ;am&n,n ak. (37)

Then, we can use the OPE (which has implicit radial ordering) to find

ok, o] = == 74 S’ 74 92 m R(OXH(2)0X" (), (38)

—w 2T

=0
_ 7{) ) %Uw ]iw ;72 o (i_mw | 59)
- 7{020 %wn f;:w % ”“”ﬂ;z_mwla (40)
= j{vzo %mwmﬂ_lnﬂ”, (41)
= 0" Omin,0; (42)

where we integrated by parts in the third line.

(¢) The holomorphic stress tensor is
1 p
T(z) = ok 0XH"0X, : (=),
and we will need the OPE

! 1
DX (2) X" (w) ~ —%W

z2—w
Then we compute

1

T(2) X (w) = =5 0X70X, (2) - X (w) (43)
= —% D OXV[0X,(2) : XH(w)] + ... (44)
:—afji)+---:iX+(zUU)+ (45)



where the [...] denotes a resolution of the OPE.
To find the OPE with 0" X*(w) we simply differentiate n times with respect to w.
By the Leibniz rule,

T(2)0"Xr(w) = 3 Wn”—iwam X0 () (Z L w) o (46)

" n! OFFLXH(w)
k! (2 — w)nkHt

(47)

The second-order pole is at & = n — 1 and has coefficient n0" X*(w), implying the
conformal weight h = n. Since 9" X*(w) is holomorphic, it is also clear that h = 0.
However, when n > 1, the operator is not primary since it contains poles of order
greater than 2.

3. Weyl transformations are anomalous in d = 2

(a) The Ricci scalar of the metric ds? = e2**?)dzdz is
R=—-8"%9,0:0. (48)

Thus the Weyl anomaly condition gives

C

9" () = 20°(T2s) = 51— (-8670.0:0) | (19)
which implies
1
<Tz2> = —mazag(f . (50)
The conservation can be written as
9"V (L) = 0 (51)

To obtain an equation for (7}.), choose v = z. This gives
GV AT:) + g7V (T..) =0 (52)
The only non-vanishing Christofell symbols are
I'?, =20.0 Iz = 20;0. (53)
The conservation thus gives
O:(T..) = ~0.(Tz) + 2(0:0)(Ts) = 5-0:(0%0 — (9.0)?) (54)

This gives the desired form



(b) The metric of a Euclidean cylinder M = R x S' (with radius R = 1) is given by:
dszyl =dr* +d¢*, TER, ¢~ p+2m.
Consider the map from flat space to M:
R oL S L
The metrics relate as:

dst, . = dzdz = (22)(dr + id)(dr — id¢) = e*"ds>

oyl
Thus, (gey1)w = €270,, with 0 = —7. In 2, Z coordinates, this gives
U:—%(lnz—l—lnz) (56)
Thus,
(Toden = rom 67)
This is related to 7, o coordinates by
(T-en = 13 (Tordewt = (Tocen) (59)
The Weyl anomaly predicts:
(T = 5= RIM], (59)
where R[M] is the Ricci scalar. Since R[M] = 0 for the cylinder, it follows:
(Trr)en + (Tsg)en = 0. (60)

Also note that due to the cylinder’s isometries (translations in 7 and ¢), (Tr4)m = 0.

Combining and gives

T.,) =— 61
(T = 5 (61)
In real time, the metric becomes:

dsgy1 = —dt* +d¢?, t=ir.

The vacuum energy is:

27
HvaC:/E<Ttt>M=/O dg (—ﬁ) :—1—‘;.

In fact, in this context it is more standard to use the Weyl anomaly (T%) = R,
whereas we used (T//) = 57~ R. In the convention where (T}) = 5 R, we would need
to multiply (7.) by a factor 2w. This gives

Hopo — —%C (62)

For a cylinder with radius R, this becomes H = —g%. Thus, ¢ can be measured by
the Casimir energy of a critical Hamiltonian on the cylinder.
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(c) For a general coordinate transformation z — w = f(z,2), Z — w = f(z, %), the
metric components transform as:

_ 0202 _ 920z _0z0%
Jow = Hwow’ 9"~ dwow 9T owow

To remain Weyl flat, gyw = gow = 0, which requires:

oz _0s om0
ow Ow Ow Ow

The Weyl factor is:

For this scale factor:

0?0 — (0,0)* =

z

w®(z) 3 (w”(z)

1 !
o1 ) =3t

where {w, z} is the Schwarzian derivative. Thus:

{w, z}.

c

<T>:E

Including this anomalous term recovers the full transformation law.



