
Conformal Field Theory and Gravity
Solutions to Problem Set 9 Fall 2024

1. Basics of 2D CFT

(a) By symmetry, we can assume that all indices are ordered, so there are at most `+1
components M11...1, M11...12, . . . , M2...2. Tracelessness implies that

δµνMµνα...β =M11α...β +M22α...β = 0 (1)

hence we can eliminate any pair of (11) indices in favor of a pair of (22) indices.
Thus any tensor with spin ` ≥ 2 has 2 independent components: M122...2 and M2...2

(the exception is ` = 0, which has a single component).
We still need to show that Mz...z := M and Mz̄...z̄ := M̄ are independent. In
fact, we can simply show that all other components vanish. This is again due to
tracelessness. In the z, z̄ coordinates, the flat-space metric reads ds2 = dzdz̄, so the
components of the metric are

gzz̄ = gz̄z =
1

2
, gzz = gz̄z̄ = 0 (2)

and the inverse metric satisfies gzz = gz̄z̄ = 0, gzz̄ = gz̄z = 2. Thus

0 = gµνMµνα...β = 4Mzz̄α...β (3)

for any indices α, . . . , β. In conclusion, the only non-zero components of any trace-
less symmetric tensor are M and M̄ . Finally, using the Jacobian, we find that

M12...2 = i`−1
(
M + (−1)`−1M̄

)
and M2...2 = i`

(
M + (−1)`M̄

)
. (4)

Conservation of a tensor means that

0 = gµν∂µMνα...β = 2
(
∂M̄α...β + ∂̄Mα...β

)
(5)

using the shorthand notation ∂ = ∂/∂z, ∂̄ = ∂/∂z̄. In particular, by setting all
coordinates either equal to z or to z̄, we find that

∂̄M = 0, ∂M̄ = 0. (6)

In other words, the component M depends only on z, and M̄ only depends on z̄.
Under a finite rotation R, a tensor transforms as

T µ...ν(x) 7→ Rµ′

µ . . . R
ν′

ν T
µ′...ν′(x′). (7)

In the z, z̄ coordinates, a rotation by an angle θ can be represented as

Rµ
ν =

(
eiθ 0
0 e−iθ

)
. (8)
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Thus
M(z, z̄) 7→ ei`θM(z′, z̄′), M̄(z, z̄) 7→ e−i`θM̄(z′, z̄′), (9)

with z′ = eiθz, z̄′ = e−iθz̄.
Finally, in the z, z̄ coordinates, parity (y 7→ −y) acts as

P µ
ν =

(
0 1
1 0

)
, (10)

so that (up to an intrinsic parity ηM = ±1),

M(z, z̄) 7→ M̄(z̄, z), M̄(z, z̄) 7→M(z̄, z). (11)

(b) We can start from the known 2-pt function

〈Jµ(x)Jν(y)〉 = kJ
Iµν(x− y)

|x− y|2∆
(12)

for some constant kJ > 0, where for conserved currents, obviously ∆ = d − 1 = 1.
We can get the component correlators using

J = (∂xµ)Jµ =
1

2
(J1 − iJ2), J̄ = (∂̄xµ)Jµ =

1

2
(J1 + iJ2). (13)

Then we find that
〈J(z, z̄)J(w, w̄)〉 = −kJ

2

1

(z − w)2
. (14)

Setting ∆ = 1, we find in particular that

〈J(z, z̄)J(w, w̄)〉 = − kJ
2(z − w)2

(15)

so we confirm that the correlator only depends on the holomorphic coordinates z, w.
Likewise

〈J̄(z, z̄)J̄(w, w̄)〉 = − kJ
2(z̄ − w̄)2

, 〈J(z, z̄)J̄(w, w̄)〉 = 0. (16)

Parity is automatically preserved in this way. Conversely, without parity invariance
we could write the same 2-pt functions with different constants kJ in the 〈JJ〉 and
〈J̄ J̄〉 correlators, and such correlators would be conformally invariant.
Likewise,

〈J̄(z, z̄)J̄(w, w̄)〉 = −kJ
2

1

(z̄ − w̄)2
, 〈J(z, z̄)J̄(w, w̄)〉 = 0. (17)

For the stress-energy tensor, we obtain

〈T (z)T (w)〉 = c/2

(z − w)4
, 〈T (z)T̄ (w)〉 = 0, 〈T̄ (z)T̄ (w)〉 = c̄/2

(z̄ − w̄)4
. (18)
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(c) It is trivial to show that the modes with labels m,n ∈ {−1, 0, 1} form a subalgebra.
In particular, their commutator only gives modes in {−1, 0, 1}. It is a standard
fact from complex analysis that the only conformal transformations of the extended
complex plane Ĉ = C ∪ {∞} are

f(z) =
az + b

cz + d
, ad− bc 6= 0. (19)

The group of these transformations is called the Möbius or global conformal group,
denoted by PSL(2,C). It is generated by translations, rotations, dilations, and
inversions:

ftr(z) = z + a, frot(z) = eiθz, fdil(z) = cz, finv(z) =
1

z
. (20)

The global conformal group enlarges the group of rigid transformations of C (that is,
translations and rotations) by adding scale transformations and mappings that turn
the complex plane “inside out.” An interesting fact is that PSL(2,C) ∼= SO(3, 1).
The global Virasoro generators have physical interpretations:

• L0 + L̄0 generates dilatations and is the Hamiltonian.
• L0 − L̄0 generates rotations and is the angular momentum.
• L−1 and L̄−1 generate translations.
• L1 and L̄1 generate special conformal transformations.

(d) Since the generator of translation is the energy-momentum tensor, we have

H = L0 + L̄0, (21)

which means that h and h̄ are the energies of the states.
Let |ψ〉 ∈ HCFT be an eigenvector of L0 with weight h. Using the Virasoro algebra,
we find that the state Ln|ψ〉 is also an eigenvector of L0 with eigenvalue shifted by
n:

L0(Ln|ψ〉) = ([L0, Ln] + LnL0)|ψ〉 = (h− n)Ln|ψ〉. (22)

Since Ln lowers the energy of a state by n, and the Hamiltonian is bounded from
below, there must exist an L0 eigenstate |ψ〉 that is annihilated by Ln for all n ≥ 0.
Any state |ψ〉 ∈ HCFT for which

L0|ψ〉 = h|ψ〉, Ln|ψ〉 = 0 for all n > 0 (23)

is called a primary or highest weight state.

(e) At level 1, there is a single state L−1|O〉 with norm

〈O|L1L−1|O〉 = 2〈O|L0|O〉 = 2h〈O|O〉 = 2h, (24)

where we normalized the state to have norm 1. This implies that for unitarity, we
need h > 0.
At level 2, there are two possible states:

|ψ1,1〉 = L2
−1|O〉, |ψ2〉 = L−2|O〉. (25)
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The 2× 2 Gram matrix at level 2 is

M (2)(c, h) =

(
〈ψ1,1|ψ1,1〉 〈ψ1,1|ψ2〉
〈ψ2|ψ1,1〉 〈ψ2|ψ2〉

)
=

(
4h(2h+ 1) 6h

6h c
2
+ 4h

)
. (26)

At level 3, we have
|ψ1〉 = L−1|O〉, (27)

with the 3× 3 Gram matrix

M (3)(c, h) =

 〈ψ1|ψ1〉 〈ψ1|ψ1,1〉 〈ψ1|ψ2〉
〈ψ1,1|ψ1〉 〈ψ1,1|ψ1,1〉 〈ψ1,1|ψ2〉
〈ψ2|ψ1〉 〈ψ2|ψ1,1〉 〈ψ2|ψ2〉

 =

2h 0 0
0 4h(2h+ 1) 6h
0 6h 1

2
(c+ 8h)

 .

(28)
This matrix should be positive definite. One can solve for its eigenvalues. You can
read about it in Di Francesco page 207. The trace is

Tr
(
M (3)(c, h)

)
=
c

2
+ 2h(5 + 4h) → c

2
when h = 0 (29)

and the determinant

det
(
M (3)(c, h)

)
= 4h(c+ 2h(c+ 8h− 5)) → 0 when h = 0. (30)

The eigenvalues, with h = 0, are 0, 0, and c/2, such that we get c > 0 again. Null
states are states for which norms are zero.

2. OPE and free scalars

(a) We can prove this result using the sampling property of the delta function. Let R
be a closed domain in the complex plane. Then the divergence theorem in complex
coordinates says that ∫

R

d2z(∂vz + ∂vz) = i

∮
∂R

(vzdz − vzdz), (31)

where vα is a vector field, and the contour ∂R is traversed anticlockwise.
Now let f(z) be a holomorphic test function and suppose that the region R encloses
the origin.∫

R

d2z ∂∂ ln |z|2f(z) =
∫
R

d2z ∂

(
1

z
f(z)

)
= −i

∮
∂R

dz

z
f(z) = 2πf(0), (32)

where we use the residue theorem in the final line.
Similarly, for an antiholomorphic test function f(z),∫

R

d2z ∂∂ ln |z|2f(z) = i

∮
∂R

dz

z
f(z) = 2πf(0). (33)

This means that
∂∂ ln |z|2 = 2πδ(z, z), (34)

by the definition of the delta function.
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(b) The free field Xµ(z, z̄) satisfies the OPE

Xµ(z, z̄)Xν(w, w̄) ∼ −α
′

2
ηµν ln |z − w|2. (35)

Taking derivatives, this implies

∂Xµ(z)∂Xν(w) ∼ −α
′

2
ηµν

1

(z − w)2
. (36)

We can invert the mode expansion ∂Xµ(z) = −i
√

α′

2

∑
n∈Z α

µ
nz

−n−1 via

i

√
2

α′

∮
dz

2πi
zn∂Xµ =

∮
dz

2πi

∑
m

αµ
mz

n−m−1 =
∑
m

αµ
mδm,n = αµ

n. (37)

Then, we can use the OPE (which has implicit radial ordering) to find

[αµ
m, α

ν
n] = − 2

α′

∮
w=0

dw

2πi
wn

∮
z=w

dz

2πi
zmR(∂Xµ(z)∂Xν(w)), (38)

=

∮
w=0

dw

2πi
wn

∮
z=w

dz

2πi
ηµν

zm

(z − w)2
, (39)

=

∮
w=0

dw

2πi
wn

∮
z=w

dz

2πi
ηµν

mzm−1

z − w
, (40)

=

∮
w=0

dw

2πi
mwm+n−1ηµν , (41)

= mηµνδm+n,0, (42)

where we integrated by parts in the third line.

(c) The holomorphic stress tensor is

T (z) = − 1

α′ : ∂X
µ∂Xµ : (z),

and we will need the OPE

∂Xµ(z)Xν(w) ∼ −α
′

2
ηµν

1

z − w
.

Then we compute

T (z)Xµ(w) = − 1

α′ : ∂X
ν∂Xν(z) : X

µ(w) (43)

= − 2

α′ : ∂X
ν [∂Xν(z) : X

µ(w)] + . . . (44)

=
∂Xµ(z)

z − w
+ · · · = ∂Xµ(w)

z − w
+ . . . (45)
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where the [...] denotes a resolution of the OPE.
To find the OPE with ∂nXµ(w) we simply differentiate n times with respect to w.
By the Leibniz rule,

T (z)∂nXµ(w) =
n∑

k=0

n!

k!(n− k)!
∂k+1Xµ(w)∂n−k

w

(
1

z − w

)
+ . . . (46)

=
n∑

k=0

n!

k!

∂k+1Xµ(w)

(z − w)n−k+1
+ . . . (47)

The second-order pole is at k = n− 1 and has coefficient n∂nXµ(w), implying the
conformal weight h = n. Since ∂nXµ(w) is holomorphic, it is also clear that h̄ = 0.
However, when n > 1, the operator is not primary since it contains poles of order
greater than 2.

3. Weyl transformations are anomalous in d = 2

(a) The Ricci scalar of the metric ds2 = e2σ(z,z̄)dzdz̄ is

R = −8e−2σ∂z∂z̄σ . (48)

Thus the Weyl anomaly condition gives

gµν〈Tµν〉 = 2gzz̄〈Tzz̄〉 =
c

24π

(
−8e−2σ∂z∂z̄σ

)
, (49)

which implies
〈Tzz̄〉 = − c

12π
∂z∂z̄σ . (50)

The conservation can be written as

gµρ∇ρ〈Tµν〉 = 0 (51)

To obtain an equation for 〈Tzz〉, choose ν = z. This gives

gz̄z∇z〈Tz̄z〉+ gzz̄∇z̄〈Tzz〉 = 0 (52)

The only non-vanishing Christofell symbols are

Γz
zz = 2∂zσ Γz̄

z̄z̄ = 2∂z̄σ . (53)

The conservation thus gives

∂z̄〈Tzz〉 = −∂z〈Tzz̄〉+ 2(∂zσ)〈Tzz̄〉 =
c

12π
∂z̄(∂

2
zσ − (∂zσ)

2) (54)

This gives the desired form

〈Tzz〉 =
c

12π
(∂2zσ − (∂zσ)

2) . (55)
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(b) The metric of a Euclidean cylinder M = R× S1 (with radius R = 1) is given by:

ds2cyl = dτ 2 + dφ2, τ ∈ R, φ ∼ φ+ 2π.

Consider the map from flat space to M :

z 7→ eτ+iφ, z̄ 7→ eτ−iφ.

The metrics relate as:

ds2flat = dzdz̄ = (zz̄)(dτ + idφ)(dτ − idφ) = e2τds2cyl.

Thus, (gcyl)µν = e2σδµν with σ = −τ . In z, z̄ coordinates, this gives

σ = −1

2
(ln z + ln z̄) (56)

Thus,
〈Tzz〉cyl =

c

12π

1

4z2
(57)

This is related to τ , σ coordinates by

〈Tzz〉cyl =
1

4z2
(〈Tττ 〉cyl − 〈Tσσ〉cyl) (58)

The Weyl anomaly predicts:

〈T µ
µ 〉M =

c

24π
R[M ], (59)

where R[M ] is the Ricci scalar. Since R[M ] = 0 for the cylinder, it follows:

〈Tττ 〉cyl + 〈Tφφ〉cyl = 0. (60)

Also note that due to the cylinder’s isometries (translations in τ and φ), 〈Tτφ〉M = 0.
Combining (58) and (60) gives

〈Tττ 〉 =
c

24π
(61)

In real time, the metric becomes:

ds2cyl = −dt2 + dφ2, t = iτ.

The vacuum energy is:

Hvac =

∫
Σ

〈Ttt〉M =

∫ 2π

0

dφ
(
− c

24π

)
= − c

12
.

In fact, in this context it is more standard to use the Weyl anomaly 〈T µ
µ 〉 = c

12
R,

whereas we used 〈T µ
µ 〉 = c

24π
R. In the convention where 〈T µ

µ 〉 = c
12
R, we would need

to multiply 〈Tzz〉 by a factor 2π. This gives

Hvac → −πc
6

(62)

For a cylinder with radius R, this becomes H = − πc
6R

. Thus, c can be measured by
the Casimir energy of a critical Hamiltonian on the cylinder.
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(c) For a general coordinate transformation z 7→ w = f(z, z̄), z̄ 7→ w̄ = f̄(z, z̄), the
metric components transform as:

gww =
∂z

∂w

∂z̄

∂w
, gw̄w̄ =

∂z

∂w̄

∂z̄

∂w̄
, gww̄ =

∂z

∂w

∂z̄

∂w̄
.

To remain Weyl flat, gww = gw̄w̄ = 0, which requires:

∂z̄

∂w
=
∂z

∂w̄
= 0,

∂z

∂w
,
∂z̄

∂w̄
6= 0.

This implies the transformations z = f(w), z̄ = f̄(w̄), leading to:

ds2 =
∂z

∂w

∂z̄

∂w̄
dwdw̄.

The Weyl factor is:

σ =
1

2
ln
(
∂w

∂z

∂w̄

∂z̄

)
.

For this scale factor:

∂2zσ − (∂zσ)
2 =

1

2

w(3)(z)

w′(z)
− 3

4

(
w′′(z)

w′(z)

)2

=
1

2
{w, z},

where {w, z} is the Schwarzian derivative. Thus:

〈T 〉 = c

24π
{w, z}.

Including this anomalous term recovers the full transformation law.

8


